Publication date: Available online 4 October 2017
Source:Journal of Dairy Science
Author(s): Robin R. White, Mary Beth Hall, Jeffrey L. Firkins, Paul J. Kononoff
The objective of this work was to leverage equations derived in a meta-analysis into an ensemble modeling system for estimating dietary physical and chemical characteristics required to maintain desired rumen conditions in lactating dairy cattle. Given the availability of data, responsiveness of ruminal pH to animal behaviors, and the chemical composition and physical form of the diet, mean ruminal pH was chosen as the primary rumen environment indicator. Physically effective fiber (peNDF) is defined as the fraction of neutral detergent fiber (NDF) that stimulates chewing activity and contributes to the floating mat of large particles in the rumen. The peNDF of feedstuffs is typically estimated by multiplying the NDF content by a particle size measure, resulting in an estimated index of effectiveness. We hypothesized that the utility of peNDF could be expanded and improved by dissociating NDF and particle size and considering other dietary factors, all integrated into a physically adjusted fiber system that can be used to estimate minimum particle sizes of TMR and diet compositions needed to maintain ruminal pH targets. Particle size measures of TMR were limited to those found with the Penn State particle separator (PSPS). Starting with specific diet characteristics, the system employed an ensemble of models that were integrated using a variable mixture of experts approach to generate more robust recommendations for the percentage of dietary DM material that should be retained on the 8-mm sieve of a PSPS. Additional continuous variables also integrated in the physically adjusted fiber system include the proportion of material (dry matter basis) retained on the 19- and 8-mm sieves of the PSPS, estimated mean particle size, the dietary concentrations of forage, forage NDF, starch, and NDF, and ruminally degraded starch and NDF. The system was able to predict that the minimum proportion of material (dry matter basis) retained on the 8-mm sieve should increase with decreasing forage NDF or dietary NDF. Additionally, the minimum proportion of dry matter material on the 8-mm sieve should increase with increasing dietary starch. Results of this study agreed with described interrelationships between the chemical and physical form of diets fed to dairy cows and quantified the links between NDF intake, diet particle size, and ruminal pH. Feeding recommendations can be interpolated from tables and figures included in this work.
http://ift.tt/2fNGo0q
Medicine by Alexandros G. Sfakianakis,Anapafseos 5 Agios Nikolaos 72100 Crete Greece,00302841026182,00306932607174,alsfakia@gmail.com,
Ετικέτες
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
-
Summary Insulinomas are rare neuroendocrine tumours that classically present with fasting hypoglycaemia. This case report discusses an un...
-
The online platform for Taylor & Francis Online content New for Canadian Journal of Remote Sen...
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου