Publication date: Available online 16 October 2017
Source:Microbiological Research
Author(s): Xu Li, Gao-Qi Gu, Wei Chen, Li-Juan Gao, Xue-Hong Wu, Li-Qun Zhang
Pseudomonas fluorescens 2P24 produces 2,4-diacetylphloroglucinol (2,4-DAPG) as the major antibiotic compound that protects plants from soil-borne diseases. Expression of the 2,4-DAPG biosynthesis enzymes, which are encoded by the phlACBD locus, is under the control of a delicate regulatory network. In this study, we identified a novel role for the outer membrane protein gene oprF, in negatively regulating the 2,4-DAPG production by using random mini-Tn5 mutagentsis. A sigma factor gene sigX was located immediately upstream of the oprF gene and shown to be a positive regulator for oprF transcription and 2,4-DAPG production. Genetic analysis of an oprF and sigX double-mutant indicated that the 2,4-DAPG regulation by oprF was dependent on SigX. The sigX gene did not affect PhlA and PhlD expression, but positively regulated the level of malonyl-CoA, the substrate of 2,4-DAPG synthesis, by influencing the expression of acetyl-CoA carboxylases. Further investigations revealed that sigX transcription was induced under conditions of salt starvation or glycine addition. All these findings indicate that SigX is a novel regulator of substrate supplements for 2,4-DAPG production.
http://ift.tt/2z0qKKR
Medicine by Alexandros G. Sfakianakis,Anapafseos 5 Agios Nikolaos 72100 Crete Greece,00302841026182,00306932607174,alsfakia@gmail.com,
Ετικέτες
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
-
Summary Insulinomas are rare neuroendocrine tumours that classically present with fasting hypoglycaemia. This case report discusses an un...
-
The online platform for Taylor & Francis Online content New for Canadian Journal of Remote Sen...
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου