Publication date: Available online 31 October 2017
Source:Radiotherapy and Oncology
Author(s): Michael G. Nix, Robin J.D. Prestwich, Richard Speight
BackgroundHead and neck MR-CT deformable image registration (DIR) for radiotherapy planning is hindered by the lack of both ground-truth and per-patient accuracy assessment methods. This study assesses novel post-registration reference-free error assessment algorithms, based on local rigid re-registration of native and pseudomodality images.MethodsHead and neck MR obtained in and out of the treatment position underwent DIR to planning CT. Block-wise mutual information (b-MI) and pseudomodality mutual information (b-pmMI) algorithms were validated against applied rotations and translations. Inherent registration error detection was compared across 14 patient datasets.ResultsUsing radiotherapy position MR-CT DIR, quantitative comparison of applied rotations and translations revealed that errors between 1 and 4 mm were accurately determined by both algorithms. Using diagnostic position MR-CT DIR, translations of up to 5 mm were accurately detected within the gross tumour volume by both methods. In 14 patient datasets, b-MI and b-pmMI detected similar errors with improved stability in regions of low contrast or CT artefact and a 10-fold speedup for b-pmMI.Conclusionsb-MI and b-pmMI algorithms have been validated as providing accurate reference-free quantitative assessment of DIR accuracy on a per-patient basis. b-pmMI is faster and more robust in the presence of modality-specific information.
http://ift.tt/2z8ncW4
Medicine by Alexandros G. Sfakianakis,Anapafseos 5 Agios Nikolaos 72100 Crete Greece,00302841026182,00306932607174,alsfakia@gmail.com,
Ετικέτες
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
-
Summary Insulinomas are rare neuroendocrine tumours that classically present with fasting hypoglycaemia. This case report discusses an un...
-
The online platform for Taylor & Francis Online content New for Canadian Journal of Remote Sen...
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου