Publication date: December 2017
Source:Ultrasound in Medicine & Biology, Volume 43, Issue 12
Author(s): Rosa M.S. Sigrist, Ahmed El Kaffas, R. Brooke Jeffrey, Jarrett Rosenberg, Jürgen K. Willmann
Ultrasound-based shear wave elastography (SWE) has recently gained substantial attention for non-invasive assessment of liver fibrosis. The purpose of this study was to perform an intra-individual comparison between 2-D shear wave elastography (2-D-SWE with a GE system) and Virtual Touch Tissue Quantification (VTTQ with a Siemens system) to assess whether these can be used interchangeably to grade fibrosis. Ninety-three patients (51 men, 42 women; mean age, 54 y) with liver disease of various etiologies (hepatitis B virus = 47, hepatitis C virus = 22; alcohol = 6, non-alcoholic steatohepatitis = 5, other = 13) were included. Using published system-specific shear wave speed cutoff values, liver fibrosis was classified into clinically non-significant (F0/F1) and significant (≥F2) fibrosis. Results indicated that intra-modality repeatability was excellent for both techniques (GE 2-D-SWE: intra-class correlation coefficient = 0.89 [0.84–0.93]; VTTQ: intra-class correlation coefficient = 0.90 [0.86–0.93]). Intra-modality classification agreement for fibrosis grading was good to excellent (GE 2-D-SWE: κ = 0.65, VTTQ: κ = 0.82). However, inter-modality agreement for fibrosis grading was only fair (κ = 0.31) using published system-specific shear wave speed cutoff values of fibrosis. In conclusion, although both GE 2-D-SWE and Siemens VTTQ exhibit good to excellent intra-modality repeatability, inter-modality agreement is only fair, suggesting that these should not be used interchangeably.
http://ift.tt/2AE1nvc
Medicine by Alexandros G. Sfakianakis,Anapafseos 5 Agios Nikolaos 72100 Crete Greece,00302841026182,00306932607174,alsfakia@gmail.com,
Ετικέτες
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
-
Summary Insulinomas are rare neuroendocrine tumours that classically present with fasting hypoglycaemia. This case report discusses an un...
-
The online platform for Taylor & Francis Online content New for Canadian Journal of Remote Sen...
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου