Publication date: 1 February 2018
Source:NeuroImage, Volume 166
Author(s): Yee-Leng Tan, Hosung Kim, Seunghyun Lee, Tarik Tihan, Lawrence Ver Hoef, Susanne G. Mueller, Anthony James Barkovich, Duan Xu, Robert Knowlton
ObjectiveFocal cortical dysplasias (FCDs) often cause pharmacoresistant epilepsy, and surgical resection can lead to seizure-freedom. Magnetic resonance imaging (MRI) and positron emission tomography (PET) play complementary roles in FCD identification/localization; nevertheless, many FCDs are small or subtle, and difficult to find on routine radiological inspection. We aimed to automatically detect subtle or visually-unidentifiable FCDs by building a classifier based on an optimized cortical surface sampling of combined MRI and PET features.MethodsCortical surfaces of 28 patients with histopathologically-proven FCDs were extracted. Morphology and intensity-based features characterizing FCD lesions were calculated vertex-wise on each cortical surface, and fed to a 2-step (Support Vector Machine and patch-based) classifier. Classifier performance was assessed compared to manual lesion labels.ResultsOur classifier using combined feature selections from MRI and PET outperformed both quantitative MRI and multimodal visual analysis in FCD detection (93% vs 82% vs 68%). No false positives were identified in the controls, whereas 3.4% of the vertices outside FCD lesions were also classified to be lesional ("extralesional clusters"). Patients with type I or IIa FCDs displayed a higher prevalence of extralesional clusters at an intermediate distance to the FCD lesions compared to type IIb FCDs (p < 0.05). The former had a correspondingly lower chance of positive surgical outcome (71% vs 91%).ConclusionsMachine learning with multimodal feature sampling can improve FCD detection. The spread of extralesional clusters characterize different FCD subtypes, and may represent structurally or functionally abnormal tissue on a microscopic scale, with implications for surgical outcomes.
http://ift.tt/2AcmVi5
Medicine by Alexandros G. Sfakianakis,Anapafseos 5 Agios Nikolaos 72100 Crete Greece,00302841026182,00306932607174,alsfakia@gmail.com,
Ετικέτες
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
-
Summary Insulinomas are rare neuroendocrine tumours that classically present with fasting hypoglycaemia. This case report discusses an un...
-
The online platform for Taylor & Francis Online content New for Canadian Journal of Remote Sen...
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου