Ετικέτες

Τετάρτη 8 Νοεμβρίου 2017

Viscoelastic properties of α-keratin fibers in hair

Publication date: December 2017
Source:Acta Biomaterialia, Volume 64
Author(s): Yang Yu, Wen Yang, Marc André Meyers
Considerable viscoelasticity and strain-rate sensitivity are a characteristic of α-keratin fibers, which can be considered a biopolymer. The understanding of viscoelasticity is an important part of the knowledge of the overall mechanical properties of these biological materials. Here, horse and human hairs are examined to analyze the sources of this response. The dynamic mechanical response of α-keratin fibers over a range of frequencies and temperatures is analyzed using a dynamic mechanical analyzer. The α-keratin fibers behave more elastically at higher frequencies while they become more viscous at higher temperatures. A glass transition temperature of ∼55°C is identified. The stress relaxation behavior of α-keratin fibers at two strains, 0.02 and 0.25, is established and fit to a constitutive equation based on the Maxwell-Wiechert model. The constitutive equation is further compared to the experimental results within the elastic region and a good agreement is obtained. The two relaxation constants, 14s and 359s for horse hair and 11s and 207s for human hair, are related to two hierarchical levels of relaxation: the amorphous matrix-intermediate filament interfaces, for the short term, and the cellular components for the long term. Results of the creep test also provide important knowledge on the uncoiling and phase transformation of the α-helical structure as hair is uniaxially stretched. SEM results show that horse hair has a rougher surface morphology and damaged cuticles. It also exhibits a lower strain-rate sensitivity of 0.05 compared to that of 0.11 for human hair. After the horse and human hairs are chemically treated and the disulfide bonds are cleaved, they exhibit a similar strain-rate sensitivity of ∼0.05. FTIR results confirms that the human hair is more sensitive to the –S–S– cleavage, resulting in an increase of cysteic acid content. Therefore, the disulfide bonds in the matrix are experimentally identified as one source of the strain-rate sensitivity and viscoelasticity in α-keratin fibers.Statement of significanceHair has outstanding mechanical strength which is equivalent to metals on a density-normalized basis. It possesses, in addition to the strength, a large ductility that is enabled by either the unfolding of the alpha helices and/or the transformation of these helices to beta sheets. We identify the deformation and failure mechanisms and connect them to the hierarchical structure, with emphasis on the significant viscoelasticity of these unique biological materials.

Graphical abstract

image


http://ift.tt/2hV9YTh

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αναζήτηση αυτού του ιστολογίου