Publication date: February 2018
Source:Ultrasound in Medicine & Biology, Volume 44, Issue 2
Author(s): Julian Haller, Volker Wilkens
In the accompanying article (Part I), a method is described to determine acoustic cavitation probabilities in tissue-mimicking materials (TMMs) using a high-intensity focused ultrasound (HIFU) transducer for both inducing and detecting the acoustic cavitation events, and its suitability for different sonication modes like continuous wave, single pulses (with pulse lengths from microseconds to milliseconds) and repeated burst signals is discussed. In Part II, the use of the method for a systematic study of the dependence of the acoustic cavitation thresholds in 3% (by weight) agar phantoms on the temporal sonication parameters is discussed. The values obtained at a frequency of 1.06 MHz, ranging from (0.58 ± 0.12) MPa for a 3-s continuous wave mode sonication to (5.2 ± 1.0) MPa for single shots with a length of 10 wave cycles, are discussed and interpreted on the basis of literature values and their self-consistency.
http://ift.tt/2kIjAC4
Medicine by Alexandros G. Sfakianakis,Anapafseos 5 Agios Nikolaos 72100 Crete Greece,00302841026182,00306932607174,alsfakia@gmail.com,
Ετικέτες
Παρασκευή 22 Δεκεμβρίου 2017
Determination of Acoustic Cavitation Probabilities and Thresholds Using a Single Focusing Transducer to Induce and Detect Acoustic Cavitation Events: II. Systematic Investigation in an Agar Material
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
-
Publication date: September 2017 Source: European Journal of Surgical Oncology (EJSO), Volume 43, Issue 9 http://ift.tt/2gezJ2D
-
Publication date: January–February 2018 Source: Materials Today, Volume 21, Issue 1 Author(s): David Bradley http://ift.tt/2BP...
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου