Publication date: February 2018
Source:Atmospheric Environment, Volume 175
Author(s): Eon S. Lee, Dilhara R. Ranasinghe, Faraz Enayati Ahangar, Seyedmorteza Amini, Steven Mara, Wonsik Choi, Suzanne Paulson, Yifang Zhu
Traffic-related air pollutants are a significant public health concern, particularly near freeways. Previous studies have suggested either soundwall or vegetation barriers might reduce the near-freeway air pollution. This study aims to investigate the effectiveness of a combination of both soundwall and vegetation barrier for reducing ultrafine particles (UFPs, diameter ≤ 100 nm) and PM2.5 (diameter ≤ 2.5 μm) concentrations. Concurrent data collection was carried out at both upwind and downwind fixed locations approximately 10–15 m away from the edge of two major freeways in California. This study observed that the reduction of UFP and PM2.5 was generally greater with the combination barrier than with either soundwall or vegetation alone. Since there were no non-barrier sites at the study locations, the reductions reported here are all in relative terms. The soundwall barrier was more effective for reducing PM2.5 (25–53%) than UFPs (0–5%), and was most effective (51–53% for PM2.5) when the wind speed ranged between 1 and 2 m/s. Under the same range of wind speed, the vegetation barrier had little effect (0–5%) on reducing PM2.5; but was effective at reducing UFP (up to 50%). For both types of roadside barrier, decreasing wind speed resulted in greater net reduction of UFPs (i.e., total number particle concentrations; inversely proportional). This trend was observed, however, only within specific particle size ranges (i.e., diameter < 20 nm for the soundwall barrier and 12–60 nm for the vegetation barrier). Out of these size ranges, the reduction of UFP concentration was proportional to increasing wind speed. Overall findings of this study support positive effects of soundwall and vegetation barriers for near-freeway air pollution mitigation.
http://ift.tt/2BbwSAj
Medicine by Alexandros G. Sfakianakis,Anapafseos 5 Agios Nikolaos 72100 Crete Greece,00302841026182,00306932607174,alsfakia@gmail.com,
Ετικέτες
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
-
Summary Insulinomas are rare neuroendocrine tumours that classically present with fasting hypoglycaemia. This case report discusses an un...
-
The online platform for Taylor & Francis Online content New for Canadian Journal of Remote Sen...
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου