Publication date: 15 February 2018
Source:NeuroImage, Volume 167
Author(s): Christian Kames, Vanessa Wiggermann, Alexander Rauscher
Quantitative susceptibility mapping (QSM) is a post-processing technique of gradient echo phase data that attempts to map the spatial distribution of local tissue magnetic susceptibilities. To obtain these maps, an ill-posed field-to-source inverse problem must be solved to remove non-local magnetic field perturbations. Current state-of-the-art algorithms which aim to solve the dipole inversion problem are plagued by the trade-off between reconstruction speed and accuracy. A two-step dipole inversion algorithm is proposed to bridge this gap. Our approach first addresses the well-conditioned k-space region, which is reconstructed using a Krylov subspace solver. Then the ill-conditioned k-space region is reconstructed by solving a constrained l1-minimization problem. The proposed pipeline does not incorporate a priori information, but utilizes sparsity constraints in the second step. We compared our method to well-established QSM algorithms with respect to COSMOS in in vivo volunteer datasets. Compared to MEDI and HEIDI the proposed algorithm produces susceptibility maps with a lower root-mean-square error and a higher coefficient of determination, with respect to COSMOS, while being 50 times faster. Our two-step dipole inversion algorithm without a priori information yields improved QSM reconstruction quality at reduced computation times compared to current state-of-the-art methods.
http://ift.tt/2jEiHZS
Medicine by Alexandros G. Sfakianakis,Anapafseos 5 Agios Nikolaos 72100 Crete Greece,00302841026182,00306932607174,alsfakia@gmail.com,
Ετικέτες
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
-
Summary Insulinomas are rare neuroendocrine tumours that classically present with fasting hypoglycaemia. This case report discusses an un...
-
The online platform for Taylor & Francis Online content New for Canadian Journal of Remote Sen...
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου