Publication date: Available online 31 January 2018
Source:Sensors and Actuators B: Chemical
Author(s): Malcolm S. Purdey, Hanna J. McLennan, Melanie L. Sutton-McDowall, Daniel W. Drumm, Xiaozhou Zhang, Patrick K. Capon, Sabrina Heng, Jeremy G. Thompson, Andrew D. Abell
The detection of hydrogen peroxide (H2O2) using fluorescent probes is critical to the study of oxidative stress in biological environments. Two important sensing architectures for detecting H2O2, aryl boronates and benzils, are compared here using novel boron-dipyrromethene (BODIPY) fluorescent probes. The aryl boronate PeroxyBODIPY-1 (PB1) and benzil-based nitrobenzoylBODIPY (NbzB) were synthesised from a common BODIPY intermediate in order to compare sensitivity and selectivity to H2O2. The aryl boronate PB1 gives the highest change in fluorescence on reaction with H2O2 while the benzil NbzB exhibits exclusive selectivity for H2O2 over other reactive oxygen species (ROS). Both proved to be cell-permeable, with PB1 being able to detect H2O2 in denuded bovine oocytes. The strengths of these aryl boronate and benzil probes can now be exploited concurrently to elucidate biological mechanisms of H2O2 production and oxidative stress.
http://ift.tt/2E3JLy1
Medicine by Alexandros G. Sfakianakis,Anapafseos 5 Agios Nikolaos 72100 Crete Greece,00302841026182,00306932607174,alsfakia@gmail.com,
Ετικέτες
Τετάρτη 31 Ιανουαρίου 2018
Biological hydrogen peroxide detection with aryl boronate and benzil BODIPY-based fluorescent probes
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
-
Summary Insulinomas are rare neuroendocrine tumours that classically present with fasting hypoglycaemia. This case report discusses an un...
-
The online platform for Taylor & Francis Online content New for Canadian Journal of Remote Sen...
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου