Publication date: Available online 10 January 2018
Source:Acta Biomaterialia
Author(s): Fukai Ma, Feng Xu, Ronggang Li, Yongtao Zheng, Fan Wang, Naili wei, Junjie zhong, Qisheng Tang, Tongming Zhu, Zhifu Wang, Jianhong Zhu
Facial nerve injury caused by traffic accidents or operations may reduce the quality of life in patients, and recovery following the injury presents unique clinical challenges. Glial cell-derived neurotrophic factor (GDNF) is important in nerve regeneration; however, soluble GDNF rapidly diffuses into body fluids, making it difficult to achieve therapeutic efficacy. In this work, we developed a rat tail derived collagen conduit to connect nerve defects in a simple and safe manner. GDNF was immobilized in the collagen conduits via chemical conjugation to enable controlled release of GDNF. The GDNF delivery system prevented rapid diffusion from the site without impacting bioactivity of GDNF; degradation of the collagen conduit was inhibited owing to the chemical conjugation. The artificial nerve conduit was then used to examine facial nerve regeneration across a facial nerve defect. Following transplantation, the artificial nerve conduits degraded gradually without causing dislocations and serious inflammation, with good integration into the host tissue. Functional and histological tests indicated that the artificial nerve conduits were able to guide the axons to grow through the defect, reaching the distal stumps. The degree of nerve regeneration in the group that was treated with the artificial nerve conduit approached that of the autograft group, and exceeded that of the other conduit grafted groups.Statement of SignificanceIn this study, we developed artificial nerve conduits consisting of GDNF immobilized on collagen, with the aim of providing an environment for nerve regeneration. Our results show that the artificial nerve conduits guided the regeneration of axons to the distal nerve segment. GDNF was immobilized stably in the artificial nerve conduits, and therefore retained a sufficient concentration at the target site to effectively promote the regeneration process. The artificial nerve conduits exhibited good biocompatibility and facilitated nerve regeneration and functional recovery with an efficacy that was close to that of an autograft, and better than that of the other grafted groups. Our approach provides an effective delivery system that overcomes the rapid diffusion of GDNF in body fluids, promoting peripheral nerve regeneration. The artificial nerve conduit therefore qualifies as a putative candidate material for the fabrication of peripheral nerve reconstruction devices.
Graphical abstract
http://ift.tt/2CZALJJ
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου