Ετικέτες

Σάββατο 10 Μαρτίου 2018

High-performance for hydrogen evolution and pollutant degradation of reduced graphene oxide/two-phase g-C 3 N 4 heterojunction photocatalysts

Abstract

We have successfully synthesized the composites of two-phase g-C3N4 heterojunction photocatalysts by one-step method. And the reduced graphene oxide/two-phase g-C3N4 heterojunction photocatalyst was fabricated via a facile hydrothermal reduction method. The characterization results indicated that the two-phase g-C3N4 was integrated closely, and the common phenomenon of agglomeration for g-C3N4 was significantly reduced. Moreover, the oxidized graphene was reduced successfully in the composites and the graphene was overlaid on the surface or the interlayers of g-C3N4 heterojunction composite uniformly. In addition, we have carried out the photocatalytic activity experiments by H2 evolution and rhodamine B removal, tetracycline removal under the visible light irradiation. The results revealed that the composite has improved the separation efficiency a lot than the pure photocatalyst. The photocurrent test demonstrated that the recombination of electrons and holes were efficiently inhibited as well as enhanced the photocatalytic activity. The 0.4% rGO loaded samples, 0.4% rGOCN2, own the best performance. Its rate of H2 evolution was 15 times as high as that of the pure g-C3N4.



http://ift.tt/2p5sNH1

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αναζήτηση αυτού του ιστολογίου