Publication date: 27 March 2018
Source:Cell Reports, Volume 22, Issue 13
Author(s): Takeshi Fukumoto, Pyoung Hwa Park, Shuai Wu, Nail Fatkhutdinov, Sergey Karakashev, Timothy Nacarelli, Andrew V. Kossenkov, David W. Speicher, Stephanie Jean, Lin Zhang, Tian-Li Wang, Ie-Ming Shih, Jose R. Conejo-Garcia, Benjamin G. Bitler, Rugang Zhang
ARID1A, a subunit of the SWI/SNF complex, is among the most frequently mutated genes across cancer types. ARID1A is mutated in more than 50% of ovarian clear cell carcinomas (OCCCs), diseases that have no effective therapy. Here, we show that ARID1A mutation confers sensitivity to pan-HDAC inhibitors such as SAHA in ovarian cancers. This correlated with enhanced growth suppression induced by the inhibition of HDAC2 activity in ARID1A-mutated cells. HDAC2 interacts with EZH2 in an ARID1A status-dependent manner. HDAC2 functions as a co-repressor of EZH2 to suppress the expression of EZH2/ARID1A target tumor suppressor genes such as PIK3IP1 to inhibit proliferation and promote apoptosis. SAHA reduced the growth and ascites of the ARID1A-inactivated OCCCs in both orthotopic and genetic mouse models. This correlated with a significant improvement of survival of mice bearing ARID1A-mutated OCCCs. These findings provided preclinical rationales for repurposing FDA-approved pan-HDAC inhibitors for treating ARID1A-mutated cancers.
Graphical abstract
Teaser
Fukumoto et al. show that ARID1A mutation confers sensitivity to pan-HDAC inhibitors such as SAHA in ovarian cancers. This correlated with enhanced growth suppression induced by the inhibition of HDAC2 activity in ARID1A-mutated cells. These findings provided preclinical rationales for repurposing FDA-approved pan-HDAC inhibitors for treating ARID1A-mutated cancers.https://ift.tt/2pQKiLB
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου