Publication date: Available online 15 March 2018
Source:Free Radical Biology and Medicine
Author(s): Markus H. Hoffmann, Helen Griffiths
Reactive oxygen species (ROS) are created in cells during oxidative phosphorylation by the respiratory chain in the mitochondria or by the family of NADPH oxidase (NOX) complexes. The first discovered and most studied of these complexes, NOX2, mediates the oxidative burst in phagocytes. ROS generated by NOX2 are dreadful weapons: while being essential to kill ingested pathogens they can also cause degenerative changes on tissue if production and release are not balanced by sufficient detoxification. In the last fifteen years evidence has been accumulating that ROS are also integral signalling molecules and are important for regulating autoimmunity and immune-mediated inflammatory diseases. It seems that an accurate redox balance is necessary to sustain an immune state that both prevents the development of overt autoimmunity (the bright side of ROS) and minimizes collateral tissue damage (the dark side of ROS). Herein, we review studies from rodent models of arthritis, lupus, and neurodegenerative diseases that show that low NOX2-derived ROS production is linked to disease and elaborate on the underlying cellular and molecular mechanisms and the translation of these results to disease in humans.
http://ift.tt/2GyqPXa
Medicine by Alexandros G. Sfakianakis,Anapafseos 5 Agios Nikolaos 72100 Crete Greece,00302841026182,00306932607174,alsfakia@gmail.com,
Ετικέτες
Πέμπτη 15 Μαρτίου 2018
The dual role of ROS in autoimmune and inflammatory diseases: evidence from preclinical models
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
-
Summary Insulinomas are rare neuroendocrine tumours that classically present with fasting hypoglycaemia. This case report discusses an un...
-
The online platform for Taylor & Francis Online content New for Canadian Journal of Remote Sen...
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου