Ετικέτες

Παρασκευή 6 Απριλίου 2018

Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

Publication date: 3 April 2018
Source:Cell Reports, Volume 23, Issue 1
Author(s): Joshua D. Campbell, Christina Yau, Reanne Bowlby, Yuexin Liu, Kevin Brennan, Huihui Fan, Alison M. Taylor, Chen Wang, Vonn Walter, Rehan Akbani, Lauren Averett Byers, Chad J. Creighton, Cristian Coarfa, Juliann Shih, Andrew D. Cherniack, Olivier Gevaert, Marcos Prunello, Hui Shen, Pavana Anur, Jianhong Chen, Hui Cheng, D. Neil Hayes, Susan Bullman, Chandra Sekhar Pedamallu, Akinyemi I. Ojesina, Sara Sadeghi, Karen L. Mungall, A. Gordon Robertson, Christopher Benz, Andre Schultz, Rupa S. Kanchi, Carl M. Gay, Apurva Hegde, Lixia Diao, Jing Wang, Wencai Ma, Pavel Sumazin, Hua-Sheng Chiu, Ting-Wen Chen, Preethi Gunaratne, Larry Donehower, Janet S. Rader, Rosemary Zuna, Hikmat Al-Ahmadie, Alexander J. Lazar, Elsa R. Flores, Kenneth Y. Tsai, Jane H. Zhou, Anil K. Rustgi, Esther Drill, Ronglei Shen, Christopher K. Wong, Joshua M. Stuart, Peter W. Laird, Katherine A. Hoadley, John N. Weinstein, Myron Peto, Curtis R. Pickering, Zhong Chen, Carter Van Waes
This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smoking and/or human papillomavirus (HPV). SCCs harbor 3q, 5p, and other recurrent chromosomal copy-number alterations (CNAs), DNA mutations, and/or aberrant methylation of genes and microRNAs, which are correlated with the expression of multi-gene programs linked to squamous cell stemness, epithelial-to-mesenchymal differentiation, growth, genomic integrity, oxidative damage, death, and inflammation. Low-CNA SCCs tended to be HPV(+) and display hypermethylation with repression of TET1 demethylase and FANCF, previously linked to predisposition to SCC, or harbor mutations affecting CASP8, RAS-MAPK pathways, chromatin modifiers, and immunoregulatory molecules. We uncovered hypomethylation of the alternative promoter that drives expression of the ΔNp63 oncogene and embedded miR944. Co-expression of immune checkpoint, T-regulatory, and Myeloid suppressor cells signatures may explain reduced efficacy of immune therapy. These findings support possibilities for molecular classification and therapeutic approaches.

Graphical abstract

image

Teaser

Campbell et al. reveal that squamous cell cancers from different tissue sites may be distinguished from other cancers and subclassified molecularly by recurrent alterations in chromosomes, DNA methylation, messenger and microRNA expression, or by mutations. These affect squamous cell pathways and programs that provide candidates for therapy.


https://ift.tt/2HfBu9o

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αναζήτηση αυτού του ιστολογίου