Ετικέτες

Παρασκευή 6 Απριλίου 2018

Metabolic Maturation during Muscle Stem Cell Differentiation Is Achieved by miR-1/133a-Mediated Inhibition of the Dlk1-Dio3 Mega Gene Cluster

Publication date: Available online 5 April 2018
Source:Cell Metabolism
Author(s): Stas Wüst, Stefan Dröse, Juliana Heidler, Ilka Wittig, Ina Klockner, Andras Franko, Erik Bonke, Stefan Günther, Ulrich Gärtner, Thomas Boettger, Thomas Braun
Muscle stem cells undergo a dramatic metabolic switch to oxidative phosphorylation during differentiation, which is achieved by massively increased mitochondrial activity. Since expression of the muscle-specific miR-1/133a gene cluster correlates with increased mitochondrial activity during muscle stem cell (MuSC) differentiation, we examined the potential role of miR-1/133a in metabolic maturation of skeletal muscles in mice. We found that miR-1/133a downregulate Mef2A in differentiated myocytes, thereby suppressing the Dlk1-Dio3 gene cluster, which encodes multiple microRNAs inhibiting expression of mitochondrial genes. Loss of miR-1/133a in skeletal muscles or increased Mef2A expression causes continuous high-level expression of the Dlk1-Dio3 gene cluster, compromising mitochondrial function. Failure to terminate the stem cell-like metabolic program characterized by high-level Dlk1-Dio3 gene cluster expression initiates profound changes in muscle physiology, essentially abrogating endurance running. Our results suggest a major role of miR-1/133a in metabolic maturation of skeletal muscles but exclude major functions in muscle development and MuSC maintenance.

Graphical abstract

image

Teaser

Wüst et al. identified a regulatory axis consisting of miR-1/133a, the transcription factor MEF2A, and miRNAs located within the Dlk1-Dio3 gene cluster, critical for normal mitochondrial morphology and function in skeletal muscles. Axis disruption prevents activation of efficient mitochondrial respiration after muscle stem cell differentiation and lasting muscle activity.


https://ift.tt/2H27iAY

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αναζήτηση αυτού του ιστολογίου