Ετικέτες

Σάββατο 14 Απριλίου 2018

Ultra-thin MoO3 film goes wafer-scaled nano-architectonics by atomic layer deposition

Publication date: 5 July 2018
Source:Materials & Design, Volume 149
Author(s): Hongyan Xu, Mohammad Karbalaei Akbari, Zhenyin Hai, Zihan Wei, Lachlan Hyde, Francis Verpoort, Chenyang Xue, Serge Zhuiykov
From the technical and design points of view, it is quite difficult to maintain the integrity of nano-films during the deposition process to fabricate practical devices based on ultra-thin semiconductor films. Thus, defect-free wafer-scaled development of ultra-thin quasi two-dimensional (2D) oxide semiconductor films represents serious challenges. Plasma-enhanced atomic layer deposition (PE-ALD) made it possible to fabricate ultra-thin MoO3 nano-films (4.6nm) over the wafer-scaled granular Au electrode. The detailed ALD recipe for ultra-thin MoO3 film was established and verified. The C12H30N4Mo and O2 plasma were used as Mo precursor and oxygen source, respectively. The growth of crystalline phases was observed when the ALD temperature of 250°C was employed. Higher ALD temperature resulted in an increase of growth rate over Au substrate (1.21Ǻ/cycle). The precise recipe design enabled the scalable fabrication of environmental sensors based on ultra-thin MoO3 films with precise thickness controllability. Electrochemical sensors based on the fabricated MoO3 nanostructures demonstrated reliable performance to hydrazine (N2H4) detection.

Graphical abstract

image


https://ift.tt/2qxpIzi

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αναζήτηση αυτού του ιστολογίου