Ετικέτες

Τρίτη 1 Μαΐου 2018

Construction of conducting polymer/cytochrome C/thylakoid membrane based photo-bioelectrochemical fuel cells generating high photocurrent via photosynthesis

elsevier-non-solus.png

Publication date: 15 August 2018
Source:Biosensors and Bioelectronics, Volume 113
Author(s): Emre Cevik, Buket Bezgin Carbas, Mehmet Senel, Huseyin Bekir Yildiz
In this study, a photo-bioelectrochemical fuel cell was constructed for photocurrent generation by illuminating the electrodes within an aqueous solution. In this purpose, gold electrode was coated with poly 4-(4H-Dithieno [3,2-b:2′,3′-d]pyrol-4-yl) aniline, P(DTP-Ph-NH2) conductive polymer film by using electrochemical polymerization. Then, P(DTP-Ph-NH2) conductive polymer film coated surface was electrochemically modified with cytochrome C which covalently linked onto the surface via bis-aniline functionality of the polymer film and formed crosslinked-structure. The thylakoid membrane was attached on the surface of this electrode by using bissulfosaxinimidyl suberate (BS3) and used as photo-anode in photo-bioelectrochemical fuel cell. The photo-cathode of the photo-bioelectrochemical fuel cell fabrication was followed by the modification of conductive polymer poly[5-(4H-dithieno [3,2-b:2′,3′-d]pyrol-4-yl) naphtalene-1-amine] film coating, glutaraldehyde activation, and bilirubin oxidase enzyme immobilization. During the photosynthesis occurring in thylakoid membrane under the light, water was oxidized and separated; while oxygen was released in anode side, the cathode side was reduced the oxygen gas into the water via a bio-electro-catalytic method. The cytochrome C was used for binding of thylakoid membrane to the electrode surface and play an important role for transferring of electrons released as a result of photosynthesis.



https://ift.tt/2HMhzyl

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αναζήτηση αυτού του ιστολογίου