Publication date: 30 September 2018
Source:Applied Surface Science, Volume 453
Author(s): Conghui Deng, Xinkun Shen, Weihu Yang, Zhong Luo, Pingping Ma, Tingting Shen, Ju Liu, Kaiyong Cai
Surface topography had been identified as a crucial property that affects osseointegration; thus, topographical modification was the most frequently adopted technique in titanium-based implant research. In this study, ethyl cellulose was employed as an additive to construct a zinc-incorporated nano-network layer onto a titanium surface by the sequential treatments of spin-coating, high-temperature calcination, and alkali heat corrosion. SEM results showed that 20 mg/mL of ethyl cellulose was optimal to fabricate a relatively flat porous coating, and the ideal nano-network structures formed by only 4 h of corrosion. Other results of XPS and ICP further proved that zinc ions were successfully incorporated into the final samples (Ti-Zn0.1, Ti-Zn0.3, and Ti-Zn0.4). Moreover, the in vitro cellular (e.g., CCK-8, ALP, mineralization) and bacterial assays presented that Ti-Zn0.3 substrates not only had the greatest proliferation and differentiation capacities for osteoblasts but also possessed relatively strong antibacterial abilities for both Escherichia coli and Staphylococcus aureus. This study provided a new way to rapidly construct the pro-osteogenesis and antibacterial nano-network structures on titanium surfaces for orthopedic application.
https://ift.tt/2rSfL0I
Medicine by Alexandros G. Sfakianakis,Anapafseos 5 Agios Nikolaos 72100 Crete Greece,00302841026182,00306932607174,alsfakia@gmail.com,
Ετικέτες
Σάββατο 19 Μαΐου 2018
Construction of zinc-incorporated nano-network structures on a biomedical titanium surface to enhance bioactivity
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
-
Summary Insulinomas are rare neuroendocrine tumours that classically present with fasting hypoglycaemia. This case report discusses an un...
-
The online platform for Taylor & Francis Online content New for Canadian Journal of Remote Sen...
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου