Ετικέτες

Δευτέρα 7 Μαΐου 2018

Exercise training prevents obesity-associated disorders: Role of miRNA-208a and MED13

Publication date: Available online 7 May 2018
Source:Molecular and Cellular Endocrinology
Author(s): Tiago Fernandes, Diego Lopes Barretti, M. Ian Phillips, Edilamar Menezes de Oliveira
Exercise training (ET) has been established as an important treatment for obesity, since it counteracts aberrant cardiac metabolism and weight gain; however, underlying mechanisms remain to be further determined. MicroRNAs (miRNAs) inhibit protein expression by base-pairing with the 3′ UTRs of mRNA targets. MiRNA-208a is a cardiac-specific miRNA that regulates β-MHC content and systemic energy homeostasis via MED13. We investigated whether ET regulates the cardiac miRNA-208a and its target MED13, reducing the weight gain and β-MHC expression in obese Zucker rats (OZR). OZR (n = 11) and Lean (L, n = 10) male rats were assigned into 4 groups: OZR, trained OZR (OZRT), L and trained L (LT). Swimming ET consisted of 60 min of duration, 1x/day, 5x/week/10 weeks. MiRNA and gene expression were analysed by real-time PCR and protein levels by western blot. Resting bradycardia was observed in trained groups. ET reduced weight gain, retroperitoneal fat weight and adipocyte cell size in OZRT compared with OZR group. Cardiac miRNA-208a levels increased 57% in OZR paralleled with a decrease of 39% in MED13 protein levels compared with L group. In contrast, ET corrected the cardiac miRNA-208a and MED13 levels in OZRT compared with L group. Furthermore, ET reduced the increased cardiac mass and normalised β-MHC protein levels caused by obesity. These results suggest that ET can prevent weight gain and pathological cardiac hypertrophy via increased of cardiac MED13 by the regulation of miRNA-208a. Therefore, miRNA-208a can be used as potential therapeutic target for metabolic and cardiac disorders.



https://ift.tt/2rqy1gE

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αναζήτηση αυτού του ιστολογίου