Ετικέτες

Τετάρτη 23 Μαΐου 2018

Functional Genomic Screening Reveals Core Modulators of Echinocandin Stress Responses in Candida albicans

Publication date: 22 May 2018
Source:Cell Reports, Volume 23, Issue 8
Author(s): Tavia Caplan, Elizabeth J. Polvi, Jinglin L. Xie, Shoshana Buckhalter, Michelle D. Leach, Nicole Robbins, Leah E. Cowen
Candida albicans is a leading cause of death due to fungal infection. Treatment of systemic candidiasis often relies on echinocandins, which disrupt cell wall synthesis. Resistance is readily acquired via mutations in the drug target gene, FKS1. Both basal tolerance and resistance to echinocandins require cellular stress responses. We performed a systematic analysis of 3,030 C. albicans mutants to define circuitry governing cellular responses to echinocandins. We identified 16 genes for which deletion or transcriptional repression enhanced echinocandin susceptibility, including components of the Pkc1-MAPK signaling cascade. We discovered that the molecular chaperone Hsp90 is required for the stability of Pkc1 and Bck1, establishing key mechanisms through which Hsp90 mediates echinocandin resistance. We also discovered that perturbation of the CCT chaperonin complex causes enhanced echinocandin sensitivity, altered cell wall architecture, and aberrant septin localization. Thus, we provide insights into the mechanisms by which cellular chaperones enable crucial responses to echinocandin-induced stress.

Graphical abstract

image

Teaser

Caplan et al. screen 3,030 Candida albicans mutants to define circuitry governing cellular responses to echinocandins, the first-line therapy for systemic candidiasis. They reveal that the molecular chaperone Hsp90 is required for stability of Pkc1 and Bck1 and that the CCT chaperonin complex is a key modulator of echinocandin susceptibility.


https://ift.tt/2KLeShs

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αναζήτηση αυτού του ιστολογίου