Ετικέτες

Τετάρτη 30 Μαΐου 2018

Mediating human stem cell behaviour via defined fibrous architectures by melt electrospinning writing

Publication date: Available online 30 May 2018
Source:Acta Biomaterialia
Author(s): Kian F. Eichholz, David A. Hoey
The architecture within which cells reside is key to mediating their specific functions within the body. In this study, we use melt electrospinning writing (MEW) to fabricate cell micro-environments with various fibrous architectures to study their effect on human stem cell behaviour. We designed, built and optimised a MEW apparatus and used it to fabricate four different platform designs of 10.4±2μm fibre diameter, with angles between fibres on adjacent layers of 90°, 45°, 10° and R (random). Mechanical characterisation was conducted via tensile testing, and human skeletal stem cells (hSSCs) were seeded to scaffolds to study the effect of architecture on cell morphology and mechanosensing (nuclear YAP). Cell morphology was significantly altered between groups, with cells on 90° scaffolds having a lower aspect ratio, greater spreading, greater cytoskeletal tension and nuclear YAP expression. Long term cell culture studies were then conducted to determine the differentiation potential of scaffolds in terms of alkaline phosphatase activity, collagen and mineral production. Across these studies, an increased cell spreading in 3-dimensions is seen with decreasing alignment of architecture correlated with enhanced osteogenesis. This study therefore highlights the critical role of fibrous architecture in regulating stem cell behaviour with implications for tissue engineering and disease progression.Statement of significanceThis is the first study which has investigated the effect of controlled fibrous architectures fabricated via melt electrospinning writing on cell behaviour and differentiation. After optimising the process and characterising scaffolds via SEM and tensile testing, cells were seeded to fibrous scaffolds with various micro-architectures and studied in terms of cell morphology. Nuclear YAP expression was further investigated as a marker of cell shape, cytoskeletal tension and differentiation potential. In agreement with these early markers, long term cell culture studies revealed for the first time that a 90° fibrous architecture is optimal for the osteogenic differentiation of skeletal stem cells.This is the first study to investigate the effect of controlled fibrous material architectures fabricated via melt electrospinning writing on cell shape, mechanosignalling and differentiation. After optimising the biofabrication process and characterising scaffolds via SEM and tensile testing, cells were seeded to fibrous scaffolds with various micro-architectures and studied in terms of cell shape. Nuclear YAP expression was further investigated as a marker of cytoskeletal tension and differentiation potential. In agreement with these early markers, long term cell culture studies revealed for the first time that a 90° fibrous architecture is optimal for the osteogenic differentiation of skeletal stem cells, by driving a spread morphology and nuclear translocation of YAP in 3 dimensions .

Graphical abstract

image


https://ift.tt/2H0xoAg

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αναζήτηση αυτού του ιστολογίου