Publication date: June 2018
Source:Brain Research Bulletin, Volume 140
Author(s): Li Tao, Di Li, Huixiang Liu, Feng Jiang, Yitian Xu, Ying Cao, Rong Gao, Gang Chen
Traumatic brain injury (TBI) triggers a complex sequence of inflammatory responses that contribute to secondary injury. Metformin, a first-line drug used to treat type 2 diabetes, is reported to exhibit potent anti-inflammatory activity on diseases associated with the central nervous system (CNS). The aim of this study is to investigate the potential neuroprotective effects of metformin on acute brain injury after TBI and explore the underlying mechanisms. Male Sprague-Dawley (SD) rats were divided into four groups: sham group, TBI group, TBI + saline (NS) group and TBI + metformin group. A weight-dropping model was employed to induce TBI in rats. Modified neurological severity scores (mNSS) were employed to assess the short-term neurological deficits, neuronal degeneration and apoptosis in the brain tissues were assayed with Fluoro-Jade B and TUNEL staining, immunofluorescence was designed to investigate microglial activation. The mRNA and protein expression levels of pro-inflammatory cytokines such as necrosis factor-alpha (TNF-α), interleukin-beta (IL-1β) and nterleukin-6 (IL-6) were evaluated by real-time quantitative reverse transcriptase polymerase chain reaction (QPCR) and enzyme-linked immunosorbent assay (ELISA). Western blotting analysis was engaged to examine the expression of NF-κB p65 and phosphorylation of ERK1/2 and p38 MAPK. Our results showed that metformin significantly ameliorated neurological deficit, cerebral edema and neuronal apoptosis in rats following TBI. Moreover, metformin administration inhibited microglial activation and decreased the production of pro-inflammatory cytokines including TNF-α, IL-1β and IL-6. In addition, metformin inhibited the translocation of NF-κB p65 from cytoplasm into the nucleus, as well as the phosphorylation of ERK1/2 and p38 MAPK. This study suggests that metformin administration inhibits microglia activation-mediated inflammation via NF-κB and MAPK signaling pathway to improve neurobehavioral function following TBI, which provide a potential therapeutic benefit in treating brain injury.
https://ift.tt/2L5ltTY
Medicine by Alexandros G. Sfakianakis,Anapafseos 5 Agios Nikolaos 72100 Crete Greece,00302841026182,00306932607174,alsfakia@gmail.com,
Ετικέτες
Τρίτη 29 Μαΐου 2018
Neuroprotective effects of metformin on traumatic brain injury in rats associated with NF-κB and MAPK signaling pathway
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
-
Summary Insulinomas are rare neuroendocrine tumours that classically present with fasting hypoglycaemia. This case report discusses an un...
-
The online platform for Taylor & Francis Online content New for Canadian Journal of Remote Sen...
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου