Ετικέτες

Σάββατο 12 Μαΐου 2018

Preparation and Cr(VI) removal performance of corncob activated carbon

Abstract

Corncob activated carbon (CCAC) was prepared by a H3PO4 activation method. The optimum conditions for the preparation of CCAC were determined by orthogonal experiments. The effects of pH, reaction time, CCAC dosage, and hexavalent chromium (Cr(VI)) concentrations on Cr(VI) removal by CCAC were studied. Corn straw activated carbon (CSAC) was also prepared using the optimum preparation conditions determined for CCAC. The properties of samples were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET) analysis, scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS). The results showed that the optimum preparation conditions for CCAC were as follows: a mass of corncob of 10 g; a mass ratio of corncob to H3PO4 of 1:2; a 5% H3BO3 content of 10 mL; an impregnation time of 45 min; a carbonization temperature of 500 °C. The optimum conditions for the removal of Cr(VI) were as follows: pH < 9; temperature, 308 K; rotation speed, 150 r min−1; reaction time, 60 min; CCAC dosage, 1 g L−1. The Cr(VI) removal rate was above 98%, and the maximum adsorption capacity of CCAC was 9.985 mg g−1. The concentration of residual Cr(VI) in water was less than 0.05 mg L−1. FTIR showed that the surfaces of the samples had more oxygen-containing functional groups, which promoted the adsorption. XRD showed that CCAC and CSAC had similar peaks and that these peaks promoted the adsorption of Cr(VI). BET indicated that the number of pores in the samples followed the order CCAC > CSAC > CAC. SEM showed that the CCAC surface had a more porous structure, which enhanced adsorption. EDS showed that the C contents of CCAC and CSAC were much higher than that of CAC. Cr(VI) adsorption on CCAC followed quasi-second-order kinetics and was in accordance with a Langmuir adsorption isotherm, with monolayer adsorption. The adsorption reaction was endothermic, where higher temperatures increased the degree of spontaneous reaction.



https://ift.tt/2wAHMyH

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αναζήτηση αυτού του ιστολογίου