Publication date: Available online 30 April 2018
Source:Trends in Biochemical Sciences
Author(s): Huan-Xiang Zhou, Valery Nguemaha, Konstantinos Mazarakos, Sanbo Qin
Intracellular membraneless organelles and their myriad cellular functions have garnered tremendous recent interest. It is becoming well accepted that they form via liquid–liquid phase separation (LLPS) of protein mixtures (often including RNA), where the organelles correspond to a protein-rich droplet phase coexisting with a protein-poor bulk phase. The major protein components contain disordered regions and often also RNA-binding domains, and the disordered fragments on their own easily undergo LLPS. By contrast, LLPS for structured proteins has been observed infrequently. The contrasting phase behaviors can be explained by modeling disordered and structured proteins, respectively, as polymers and colloids. These physical models also provide a better understanding of the regulation of droplet formation by cellular signals and its dysregulation leading to diseases.
https://ift.tt/2IJ3sKu
Medicine by Alexandros G. Sfakianakis,Anapafseos 5 Agios Nikolaos 72100 Crete Greece,00302841026182,00306932607174,alsfakia@gmail.com,
Ετικέτες
Τετάρτη 23 Μαΐου 2018
Why Do Disordered and Structured Proteins Behave Differently in Phase Separation?
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
-
Summary Insulinomas are rare neuroendocrine tumours that classically present with fasting hypoglycaemia. This case report discusses an un...
-
The online platform for Taylor & Francis Online content New for Canadian Journal of Remote Sen...
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου