Publication date: 15 October 2018
Source:Biosensors and Bioelectronics, Volume 117
Author(s): Yuan Zhao, Yaxin Yang, Linyan Cui, Fangjie Zheng, Qijun Song
In this work, a novel and facile electrochemical sensor is reported for the highly selective and sensitive detection of dissolved hydrogen sulfide (H2S), attributing to the redox reaction between Au@Ag core-shell nanoparticles (Au@Ag NPs) and H2S. Electroactive Au@Ag NPs not only possess excellent conductivity, but exhibit great electrochemical reactivity at 0.26 V due to the electrochemical oxidation from Ag° to Ag+. In the presence of H2S, the Ag shell of Au@Ag NPs can be oxidized to Ag2S, resulting in the decrease of differential pulse voltammetry (DPV) peak at 0.26 V. The electrochemical sensor exhibits a wide linear response range from 0.1 nM to 500 nM. The limit of detection (LOD) for H2S is as low as 0.04 nM. The developed sensor shows significant prospects in the study of pathological processes related to the mechanism of H2S production.
https://ift.tt/2HsLIl3
Medicine by Alexandros G. Sfakianakis,Anapafseos 5 Agios Nikolaos 72100 Crete Greece,00302841026182,00306932607174,alsfakia@gmail.com,
Ετικέτες
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
-
Summary Insulinomas are rare neuroendocrine tumours that classically present with fasting hypoglycaemia. This case report discusses an un...
-
The online platform for Taylor & Francis Online content New for Canadian Journal of Remote Sen...
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου