Abstract
During the development of mammalian cortex, late neurons generated by neuronal progenitors bypass earlier-born neurons and migrate to reach upper layers of cortical plate in an inner-to-outer fashion. Filamentous-actin (F-actin) can regulate neuronal migration, whereas Coactosin-like protein 1 (Cotl1) modulates F-actin. Lys 75 and Arg 73 of Cotl1 play an important role in binding F-actin; when they are mutated to Glu, Cotl1 cannot bind F-actin, called as a non-actin-binding mutant (ABM). The Lys 131 site of Cotl1, the 5-Lipoxygenase (5LO) binding site, is spatially close to Lys 75, leading to impact the binding of Cotl1 to F-actin. When Lys 131 is mutated to Ala (K131A), Cotl1 cannot bind to 5LO. We have demonstrated that overexpression of Cotl1 inhibited neuronal migration and increased the length of neuronal leading processes. To further explore cellular and molecular mechanisms of Cotl1's effect on neuronal migration, we constructed two mutant vectors—Cotl1-ABM and Cotl1-K131A and studied using in utero electroporation and primary neuronal culture technique. Results indicated that in the Cotl1-ABM group, the neuronal migration and length of the leading process both recovered as control neurons at the postnatal day 1 (P1), while in the Cotl1-K131A group, numerous neurons remained in deeper layers of cortical plate or intermediate zone. However, at P7, most Cotl1-K131A transfected neurons reached their destination. Moreover, we found that overexpression of Cotl1 inhibited the proliferation and mitotic activity of NPs. Therefore, These results demonstrated that Cotl1 played an important role in mouse neocortical development.
https://ift.tt/2BEiNx9
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου