Ετικέτες

Παρασκευή 7 Δεκεμβρίου 2018

MnO 2 -loaded microorganism-derived carbon for U(VI) adsorption from aqueous solution

Abstract

A low-cost industrial microorganism, Saccharomyces cerevisiae, was employed as a precursor to synthesize carbon/MnO2 composites (MMCs) via an oxidation-reduction reaction and one-step carbonization method for U(VI) adsorption. Scanning electron microscopy and nitrogen adsorption measurement indicated that the microorganism's carbonization could form surface porous structure and increase the specific surface area. Batch experiments showed that the maximum U(VI) adsorption capacity of MMCs reached 207 mg g−1 at [U(VI)]initial = 25 mg L−1 and pHinitial = 4.5. The obtained thermodynamic and kinetic parameters suggested that the process is endothermic, spontaneous, and chemisorption. FTIR and X-ray photoelectron spectroscopy demonstrated that the surface hydroxyl groups of composites might be the reactive adsorption sites for U(VI). Additionally, 0.5 mol L−1 HNO3 solution could desorb ~ 95% uranium from U(VI)-loaded MMCs, and materials exhibited good regenerated availability. This study suggests that MMCs can be a potential adsorbent for U(VI) preconcentration and removal from radioactive wastewater.



https://ift.tt/2BXXB31

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αναζήτηση αυτού του ιστολογίου