Ετικέτες

Πέμπτη 3 Ιανουαρίου 2019

Push-out bond strength of calcium-silicate cements following Er:YAG and diode laser irradiation of root dentin

Abstract

This study aimed to compare the effects of diode and Er:YAG laser irradiation of root dentin on push-out bond strength of mineral trioxide aggregate (MTA) and calcium-enriched mixture (CEM) cements. An in vitro experimental study was conducted on 90 dentin discs, cut out of freshly extracted human teeth. The discs were instrumented to obtain 1.3-mm lumen diameter. Then, they were randomly divided into six groups (n = 15). Groups 1 and 4 subjected to diode laser (Wiser, Doctor Smile, Italy) (980 nm, 1 W, continuous mode) for 10 s and filled with MTA and CEM cements. Groups 2 and 5 subjected to Er:YAG laser (Deka, Italy) (2940 nm, 1 W, 10 Hz, 230 μs) for 10 s and filled with MTA and CEM cements. Groups 3 and 6 (control groups) were filled with MTA and CEM cements without laser irradiation. After 7 days, push-out bond strength test was performed using a universal testing machine in order to evaluate the adhesion of the biomaterials to dentin. The samples were evaluated under a light microscope at × 40 magnification to determine the mode of fracture. Data were analyzed using two-way ANOVA. The highest push-out bond strength (8.76 ± 3.62 MPa) was noted in group 1 (diode/MTA), which was significantly higher than the other groups (P < 0.001). The lowest bond strength (2.61 ± 0.81) was noted in group 6 (control/CEM). Diode laser significantly increased the bond strength of both cements (P < 0.05), but Er:YAG laser irradiation only increased the bond strength of CEM and had no significant effect on MTA (P = 0.603). The bond strength of MTA control group was higher than that of CEM control group (P = 0.001). Push-out bond strength of endodontic cements can be affected by dentin conditioning with diode 980 nm and Er:YAG laser. Nine hundred eighty-nanometer diode laser irradiation is recommended to increase the bond strength of endodontic cements particularly the CEM cement to dentin.



http://bit.ly/2GV8A1T

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αναζήτηση αυτού του ιστολογίου