Publication date: 1 January 2017
Source:European Journal of Pharmaceutical Sciences, Volume 96
Author(s): Xiaodan Wang, Xiangqin Gu, Huimin Wang, Yujiao Sun, Haiyang Wu, Shirui Mao
Recently, polymeric materials with multiple functions have drawn great attention as the carrier for drug delivery system design. In this study, a series of multifunctional drug delivery carriers, hyaluronic acid (HA)-glycyrrhetinic acid (GA) succinate (HSG) copolymers were synthesized via hydroxyl group modification of hyaluronic acid. It was shown that the HSG nanoparticles had sub-spherical shape, and the particle size was in the range of 152.6–260.7nm depending on GA graft ratio. HSG nanoparticles presented good short term and dilution stability. MTT assay demonstrated all the copolymers presented no significant cytotoxicity. In vivo imaging analysis suggested HSG nanoparticles had superior liver targeting efficiency and the liver targeting capacity was GA graft ratio dependent. The accumulation of DiR (a lipophilic, NIR fluorescent cyanine dye)-loaded HSG-6, HSG-12, and HSG-20 nanoparticles in liver was 1.8-, 2.1-, and 2.9-fold higher than that of free DiR. The binding site of GA on HA may influence liver targeting efficiency. These results indicated that HSG copolymers based nanoparticles are potential drug carrier for improved liver targeting.
Graphical abstract
http://ift.tt/2dxvBGh
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου