Ετικέτες

Σάββατο 17 Δεκεμβρίου 2016

Catalytic oxidation of 1,2-DCBz over V 2 O 5 /TiO 2 -CNTs: effect of CNT diameter and surface functional groups

Abstract

A series of V2O5/TiO2-carbon nanotube (CNT) catalysts were prepared and tested to decompose gaseous 1,2-dichlorobenzene (1,2-DCBz). Several physicochemical methods, including nitrogen adsorption, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and H2 temperature-programmed reduction (TPR) were employed to characterise their physicochemical properties. To better understand the effect of CNT properties on the reactivity of V2O5/TiO2-CNT catalysts, the 1,2-DCBz residue remaining in the off-gas and on the catalyst surface were both collected and analysed. The results indicate that the outer diameter and the surface functional groups (hydroxide radical and carboxyl) of CNTs significantly influence upon the catalytic activity of CNT-containing V2O5/TiO2 catalysts: the CNT outer diameter mainly affects the aggregation of CNTs and the π-π interaction between the benzene ring and CNTs, while the introduction of –OH and –COOH groups by acid treatment can further enlarge specific surface area (SSA) and contribute to a higher average oxidation state of vanadium (V aos) and supplemental surface chemisorbed oxygen (Oads). In addition, the enhanced mobility of lattice oxygen (Olatt) also improves the oxidation ability of the catalysts.



http://ift.tt/2gXY6RO

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αναζήτηση αυτού του ιστολογίου