Ετικέτες

Σάββατο 24 Δεκεμβρίου 2016

Decomposition of 3,5-dinitrobenzamide in aqueous solution during UV/H 2 O 2 and UV/TiO 2 oxidation processes

Abstract

3,5-Dinitrobenzamide has been widely used as a feed additive to control coccidiosis in poultry, and part of the added 3,5-dinitrobenzamide is excreted into wastewater and surface water. The removal of 3,5-dinitrobenzamide from wastewater and surface water has not been reported in previous studies. Highly reactive hydroxyl radicals from UV/hydrogen peroxide (H2O2) and UV/titanium dioxide (TiO2) advanced oxidation processes (AOPs) can decompose organic contaminants efficiently. In this study, the decomposition of 3,5-dinitrobenzamide in aqueous solution during UV/H2O2 and UV/TiO2 oxidation processes was investigated. The decomposition of 3,5-dinitrobenzamide fits well with a fluence-based pseudo-first-order kinetics model. The decomposition in both two oxidation processes was affected by solution pH, and was inhibited under alkaline conditions. Inorganic anions such as NO3, Cl, SO42−, HCO3, and CO32− inhibited the degradation of 3,5-dinitrobenzamide during the UV/H2O2 and UV/TiO2 oxidation processes. After complete decomposition in both oxidation processes, approximately 50% of 3,5-dinitrobenzamide was decomposed into organic intermediates, and the rest was mineralized to CO2, H2O, and other inorganic anions. Ions such as NH4+, NO3, and NO2 were released into aqueous solution during the degradation. The primary decomposition products of 3,5-dinitrobenzamide were identified using time-of-flight mass spectrometry (LCMS-IT-TOF). Based on these products and ions release, a possible decomposition pathway of 3,5-dinitrobenzamide in both UV/H2O2 and UV/TiO2 processes was proposed.



http://ift.tt/2hcF4lT

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αναζήτηση αυτού του ιστολογίου