Publication date: March 2017
Source:Biomaterials, Volume 121
Author(s): Fengyi Du, Lirong Zhang, Li Zhang, Miaomiao Zhang, Aihua Gong, Youwen Tan, Jiawen Miao, Yuhua Gong, Mingzhong Sun, Huixiang Ju, Chaoyang Wu, Shenqiang Zou
The effectiveness of radiotherapy can decrease due to inaccurate positioning of machinery and inherent radioresistance of tumors. To address this issue, we present a novel theranostic nanoplatform based on gadolinium-doped carbon dots (Gd-doped CDs) designed specifically for magnetic resonance imaging (MRI)-guided radiotherapy of tumors. The Gd-doped CDs (∼18 nm) with dispersibility in water and stable photoluminescence were synthesized via a one-step hydrothermal approach. After tail vein injection of the Gd-doped CDs, they exhibited a relatively long circulation time (∼6 h), enabled efficient passive tumor targeting. Gd-doped CDs accumulate in the kidney and could be cleared out of the body from bladder. Importantly, they exhibited favorable biocompatibility with excellent performance in longitudinal relaxivity rate (r1) of 6.45 mM−1S−1 and radiosensitization enhancements. These results show that Gd-doped CDs are excellent T1 contrast agents and radiosensitizers, possessing great promise for MRI-guided radiotherapy of tumors.
http://ift.tt/2izxOlE
Medicine by Alexandros G. Sfakianakis,Anapafseos 5 Agios Nikolaos 72100 Crete Greece,00302841026182,00306932607174,alsfakia@gmail.com,
Ετικέτες
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
-
Summary Insulinomas are rare neuroendocrine tumours that classically present with fasting hypoglycaemia. This case report discusses an un...
-
The online platform for Taylor & Francis Online content New for Canadian Journal of Remote Sen...
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου