Abstract
With rapid socioeconomic development, water pollution emergency has become increasingly common and could potentially harm the environment and human health, especially heavy metal pollution. In this paper, we investigate the Cd pollution emergency that occurred in the Pearl River network, China, in 2005, and we build a migration and transformation model for heavy metals to simulate the spatiotemporal distribution of Cd concentrations under various scenarios of Cd pollution emergency in Foshan City. Moreover, human health hazard and carcinogenic risk for local residents of Foshan City were evaluated. The primary conclusions were as follows: (1) the number of carcinogen-affected people per year under scenario 1 reached 254.41 when the frequency was 0.1 year/time; specifically, the number of people with cancer per year in the area of the Datang, Lubao, and Nanbian waterworks was 189.36 accounting for 74% of the total number per year; (2) at the frequency of 5 years/time, the Lubao waterwork is the only one in extremely high- or high-risk grade, while besides it, the risk grade in the Datang, Nanbian, Xinan, Shitang, and Jianlibao waterworks is in the extremely high or high grade when the frequency is 0.1 year/time; (3) when Cd pollution accidents with the same level occurs again, Cd concentration decreases to a low level in the water only if the migration distance of Cd is at least 40–50 km. Based on the health risk assessment of Cd pollution, this study gives the recommendation that the distance should keep above 50 km in tidal river network of the Pearl River Delta between those factories existing the possibility of heavy metal pollution and the drinking water source. Only then can the public protect themselves from hazardous effects of higher levels of heavy metal.
http://ift.tt/2kkslDs
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου