Publication date: Available online 10 February 2017
Source:International Journal of Psychophysiology
Author(s): A.H. Mehrnam, A.M. Nasrabadi, M. Ghodoosi, A. Mohammadian, Sh. Torabi
The purpose of this study is to extend a feature set with non-linear features to improve classification rate of guilty and innocent subjects. Non-linear features can provide extra information about phase space. The Event-Related Potential (ERP) signals were recorded from 49 subjects who participated in concealed face recognition test. For feature extraction, at first, several morphological characteristics, frequency bands, and wavelet coefficients (we call them basic-features) are extracted from each single-trial ERP. Recurrence Quantification Analysis (RQA) measures are then computed as non-linear features from each single-trial. We apply Genetic Algorithm (GA) to select the best feature set and this feature set is used for classification of data using Linear Discriminant Analysis (LDA) classifier. Next, we use a new approach to improve classification results based on introducing an adaptive-threshold. Results indicate that our method is able to correctly detect 91.83% of subjects (45 correct detection of 49 subjects) using combination of basic and non-linear features, that is higher than 87.75% for basic and 79.59% for non-linear features. This shows that combination of non-linear and basic- features could improve classification rate.
http://ift.tt/2kCv7Dc
Medicine by Alexandros G. Sfakianakis,Anapafseos 5 Agios Nikolaos 72100 Crete Greece,00302841026182,00306932607174,alsfakia@gmail.com,
Ετικέτες
Παρασκευή 10 Φεβρουαρίου 2017
A new approach to analyze data from EEG-based concealed face recognition system
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
-
Publication date: September 2017 Source: European Journal of Surgical Oncology (EJSO), Volume 43, Issue 9 http://ift.tt/2gezJ2D
-
Publication date: January–February 2018 Source: Materials Today, Volume 21, Issue 1 Author(s): David Bradley http://ift.tt/2BP...
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου