Ετικέτες

Πέμπτη 2 Φεβρουαρίου 2017

Photobiomodulation laser and pulsed electrical field increase the viability of the musculocutaneous flap in diabetic rats

Abstract

The purpose of this study is to investigate the effect of pulsed electrical field (PEF) and photobiomodulation laser (PBM) on the viability of the TRAM flap in diabetic rats. Fifty Wistar rats were divided into five homogeneous groups: Group 1—control; Group 2—diabetics; Group 3—diabetics + PEF; Group 4—diabetic + laser 660 nm, 10 J/cm2, 0.27 J; Group 5—diabetic + laser 660 nm, 140 J/cm2, 3.9 J. The percentage of necrotic area was evaluated using software Image J®. The peripheral circulation of the flap was evaluated by infrared thermography FLIR T450sc (FLIR® Systems—Oregon USA). The thickness of the epidermis (haematoxylin-eosin), mast cell (toluidine blue), leukocytes, vascular endothelial growth factor, fibroblast and newly formed blood vessels were evaluated. For the statistical analysis, the Kruskal-Wallis test was applied followed by Dunn and ANOVA test followed by Tukey with critical level of 5% (p < 0.05). The PEF reduced the area of necrosis, decreased the leukocytes, increased the mast cells, increased the thickness of epidermis and increased newly formed blood vessels when it was compared to the untreated diabetic group of animals. Laser 660 nm, fluence 140 J/cm2 (3.9 J) showed better results than the 10 J/cm2 (0.27 J) related to reduction of the area of necrosis and the number of leukocytes, increased mast cells, increased thickness of the epidermis, increased vascular endothelial growth factor, increased fibroblast growth factor and increase of newly formed blood vessels in diabetic animals. The laser and pulsed electrical field increase the viability of the musculocutaneous flap in diabetic rats.



http://ift.tt/2k5c9Fn

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αναζήτηση αυτού του ιστολογίου