Publication date: Available online 1 April 2017
Source:Artificial Intelligence in Medicine
Author(s): Chenglin Liu, Yu-Hang Zhang, Tao Huang, Yudong Cai
BackgroundLung adenocarcinoma is one of most threatening disease to human health. Although many efforts have been devoted to its genetic study, few researches have been focused on the transcription factors which regulate tumor initiation and progression by affecting multiple downstream gene transcription. It is proved that proper transcription factors may mediate the direct reprogramming of cancer cells, and reverse the tumorigenesis on the epigenetic and transcription levels.MethodsIn this paper, a computational method is proposed to identify the core transcription factors that can regulate as many as possible lung adenocarcinoma associated genes with as little as possible redundancy. A greedy strategy is applied to find the smallest collection of transcription factors that can cover the differentially expressed genes by its downstream targets. The optimal subset which is mostly enriched in the differentially expressed genes is then selected.ResultsSeven core transcription factors (MCM4, VWF, ECT2, RBMS3, LIMCH1, MYBL2 and FBXL7) are detected, and have been reported to contribute to tumorigenesis of lung adenocarcinoma. The identification of the transcription factors provides a new insight into its oncogenic role in tumor initiation and progression, and benefits the discovery of functional core set that may reverse malignant transformation and reprogram cancer cells.
http://ift.tt/2n0I2BJ
Medicine by Alexandros G. Sfakianakis,Anapafseos 5 Agios Nikolaos 72100 Crete Greece,00302841026182,00306932607174,alsfakia@gmail.com,
Ετικέτες
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
-
Summary Insulinomas are rare neuroendocrine tumours that classically present with fasting hypoglycaemia. This case report discusses an un...
-
The online platform for Taylor & Francis Online content New for Canadian Journal of Remote Sen...
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου