Publication date: 15 December 2017
Source:Biosensors and Bioelectronics, Volume 98
Author(s): Yufang Hu, Qingqing Zhang, Zhiyong Guo, Sui Wang, Chunnuan Du, Chunyang Zhai
A novel label-free electrochemical strategy was established based on the unique electro-catalytic activity of graphene oxide (GO)-supported terminal deoxynucleotidyl transferase (TdT)-generated C-rich DNA nanotail-templated silver nanoclusters (DNA-AgNCs). TdT can catalyze the deoxycytidine triphosphate (dCTP) to the 3′-OH terminus of single-stranded DNA (ssDNA) with no template; then, in the presence of Ag(I), TdT-generated C-rich DNA sequence was employed for the synthetic template of AgNCs because of the formed complexes of nitrogen atoms of cytosine based with silver atoms. We proved that in situ grown DNA nanotail-templated AgNCs can be adsorbed on GO-modified electrode and possess high electro-catalytic activity to H2O2 reduction, presenting a good electrochemical indicator for signal readout. Under optimal conditions, the proposed biosensor could be employed for quantitatively monitoring TdT activity and within a dynamic range from 0.4 to 90U/mL and a low limit of detection is 0.08U/mL. With high sensitivity and excellent selectivity, this strategy offers a facile, convenient and specific electrochemical method for TdT activity detection and its relevant inhibitors screening. It holds a promising potential in the practical application of TdT-based biochemical research, disease diagnosis and drug discovery.
http://ift.tt/2ubBlfc
Medicine by Alexandros G. Sfakianakis,Anapafseos 5 Agios Nikolaos 72100 Crete Greece,00302841026182,00306932607174,alsfakia@gmail.com,
Ετικέτες
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
-
Summary Insulinomas are rare neuroendocrine tumours that classically present with fasting hypoglycaemia. This case report discusses an un...
-
The online platform for Taylor & Francis Online content New for Canadian Journal of Remote Sen...
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου