Ετικέτες

Δευτέρα 26 Ιουνίου 2017

Water dissociation on multimetallic catalysts

Publication date: 5 December 2017
Source:Applied Catalysis B: Environmental, Volume 218
Author(s): José L.C. Fajín, M. Natália D.S. Cordeiro, José R.B. Gomes
DFT based calculations were employed in the study of the dissociation of the water molecule onto copper and nickel (110) and (111) surface models, incorporating two additional metallic elements, because it was found previously that metal alloying leads to strong synergic effects in the catalysis of this reaction. The dissociation reaction was studied on the Pt/Ru/Ni, Pt/Ru/Cu, Rh/Ru/Cu, Ni/Ru/Cu and Al/Zn/Cu combinations, in a total of 25 trimetallic surfaces. Very low activation energy barriers for the dissociation of water were calculated on several of the surface models, suggesting that multimetallic surfaces can be interesting alternatives for catalyzing the dissociation of the water molecule, which is a crucial elementary step in the water gas shift reaction. Encouragingly, the calculations predict a facile dissociation of the water molecule onto the (AlZn)@Cu(111) catalyst model which is in agreement with recent experimental studies where it was found that a Cu0.5Zn0.5Al2O4 spinel oxide catalyst holds improved activity for the water gas shift reaction.

Graphical abstract

image


http://ift.tt/2tdSYhr

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αναζήτηση αυτού του ιστολογίου