Publication date: September 2017
Source:Biomaterials, Volume 140
Author(s): Ryan J. Mondschein, Akanksha Kanitkar, Christopher B. Williams, Scott S. Verbridge, Timothy E. Long
This review highlights the synthesis, properties, and advanced applications of synthetic and natural polymers 3D printed using stereolithography for soft tissue engineering applications. Soft tissue scaffolds are of great interest due to the number of musculoskeletal, cardiovascular, and connective tissue injuries and replacements humans face each year. Accurately replacing or repairing these tissues is challenging due to the variation in size, shape, and strength of different types of soft tissue. With advancing processing techniques such as stereolithography, control of scaffold resolution down to the μm scale is achievable along with the ability to customize each fabricated scaffold to match the targeted replacement tissue. Matching the advanced manufacturing technique to polymer properties as well as maintaining the proper chemical, biological, and mechanical properties for tissue replacement is extremely challenging. This review discusses the design of polymers with tailored structure, architecture, and functionality for stereolithography, while maintaining chemical, biological, and mechanical properties to mimic a broad range of soft tissue types.
http://ift.tt/2t7wrTC
Medicine by Alexandros G. Sfakianakis,Anapafseos 5 Agios Nikolaos 72100 Crete Greece,00302841026182,00306932607174,alsfakia@gmail.com,
Ετικέτες
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
-
Summary Insulinomas are rare neuroendocrine tumours that classically present with fasting hypoglycaemia. This case report discusses an un...
-
The online platform for Taylor & Francis Online content New for Canadian Journal of Remote Sen...
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου