Abstract
Cd2+ resistance and bioaccumulation capacity were selected from parental Zygosaccharomyces rouxii (CRZ-0) while maintaining NaCl tolerance using protoplast mutagenesis technology. Ultraviolet-diethyl sulfate (UV-DES) cooperative mutagenesis, followed by preliminary screening and rescreening, was used to select the mutant strain CRZ-9. CRZ-9 grew better than CRZ-0 in YPD medium with 20 or 50 mg L−1 of Cd2+. Scanning electron microscopy observations and flow cytometry tests indicated that CRZ-9 was more effective at eliminating reactive oxygen species (ROS) generated by Cd2+, which led to less cellular structural damage and lower lethality. Furthermore, compared with CRZ-0, CRZ-9 exhibited increased potential for application with higher Cd2+ removal ratio, wider working pH range, and lower biomass dosage in Cd2+ bioaccumulation. The mutant strain CRZ-9 possessed improved Cd2+ resistance and bioaccumulation capacity and therefore is a promising strain to remove Cd2+ from wastewater.
http://ift.tt/2sDpU28
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου