Ετικέτες

Πέμπτη 13 Ιουλίου 2017

Classification of mild cognitive impairment EEG using combined recurrence and cross recurrence quantification analysis

Publication date: Available online 13 July 2017
Source:International Journal of Psychophysiology
Author(s): Leena T. Timothy, Bindu M. Krishna, Usha Nair
The present study is aimed at the classification of mild cognitive impairment (MCI) EEG by combining complexity and synchronization features based on quantifiers from the common platform of recurrence based analysis. Recurrence rate (RR) of recurrence quantification analysis (RQA) is used for complexity analysis and RR of cross recurrence quantification analysis (CRQA) is used for synchronization analysis. The investigations are carried out on EEG from two states (i) resting eyes closed (EC) and (ii) short term memory task (STM).The results of our analysis show lower levels of complexity and higher levels of inter and intra hemispheric synchronisation in the MCI EEG compared to that of normal controls (NC) as indicated by the statistically significant higher value of RQA RR and CRQA RR. The results also evidence the effectiveness of memory activation task by bringing out the characteristic features of MCI EEG in task specific regions of temporal, parietal and frontal lobes under the STM condition. A new approach of combining complexity and synchronization features for EEG classification of MCI subjects is proposed, based on the geometrical signal separation in a feature space formed by RQA and CRQA RR values. The results of linear classification analysis of MCI and NC EEG also reveals the effectiveness of task state analysis by the enhanced classification efficiency under the cognitive load of STM condition compared to that of EC condition.



http://ift.tt/2tLffmp

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αναζήτηση αυτού του ιστολογίου