Publication date: Available online 13 July 2017
Source:Molecular and Cellular Endocrinology
Author(s): Qiuhong Chen, Junying Huang, Wenyan Gong, Zhiquan Chen, Jiani Huang, Peiqing Liu, Heqing Huang
Advanced glycation end products (AGEs), formed at an accelerated rate under diabetes, play a role in inflammation and fibrosis in mesangial areas in diabetic nephropathy (DN). However, the transcriptional modulator that mediates the cellular response to AGEs remains largely obscure. Our goal was to determine whether myocardin-related transcription factor (MRTF)-A, a key protein involved in the transcriptional regulation of smooth muscle cell phenotype, was responsible for the glomerular mesangial cells (GMCs) injury by AGEs, and, if so, how MRTF-A promoted mesangial dysfunction initiated by AGEs. In this study, MRTF-A was activated by AGEs in terms of protein expression and nuclear translocation in rat GMCs. MRTF-A overexpression synergistically enhanced the induction of FN and ICAM-1 by AGEs. In contract, depletion of MRTF-A abrogated the pathogenic program triggered by AGEs. Then, by interfering with MRTF-A, STAT1, STAT3 and STAT5 nuclear translocation were observed and we screened out STAT5, which was decreased obviously when MRTF-A depleted. Further investigation showed that MRTF-A interacted with STAT5 and promoted its nuclear accumulation and transcriptional activity. Therefore, our present findings suggested a role of MRTF-A in AGEs-induced GMCs injury, and further revealed that the underlying molecular mechanism was related to activating the nuclear factor STAT5.
Graphical abstract
http://ift.tt/2vlKySL
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου