Publication date: Available online 14 July 2017
Source:The Journal of Steroid Biochemistry and Molecular Biology
Author(s): Chloe Y.S. Cheng, Tae-Kang Kim, Saowanee Jeayeng, Andrzej T. Slominski, Robert C. Tuckey
Recent studies indicate that CYP2R1 is the major 25-hydroxylase catalyzing the first step in vitamin D activation. Since the catalytic properties of CYP2R1 have been poorly studied to date and it is a membrane protein, we examined the purified enzyme in a membrane environment. CYP2R1 was expressed in E. coli and purified by nickel affinity- and hydrophobic interaction-chromatography and assayed in a reconstituted membrane system comprising phospholipid vesicles plus purified human NADPH-P450 oxidoreductase. CYP2R1 converted vitamin D3 in the vesicle membrane to 25-hydroxyvitamin D3 [25(OH)D3] with good adherence to Michaelis-Menten kinetics. The kinetic parameters for 25-hydroxylation of vitamin D3 by the two major vitamin D 25-hydroxylases, CYP2R1 and CYP27A1, were examined in vesicles under identical conditions. CYP2R1 displayed a slightly lower kcat than CYP27A1 but a much lower Km for vitamin D3, and thus an overall 17-fold higher catalytic efficiency (kcat/Km), consistent with CYP2R1 being the major vitamin D 25-hydroxylase. 20-Hydroxyvitamin D3 [20(OH)D3], the main product of vitamin D3 activation by an alternative pathway catalyzed by CYP11A1, was metabolized by CYP2R1 to 20,25-dihydroxyvitamin D3 [20,25(OH)2D3], with catalytic efficiency similar to that for the 25-hydroxylation of vitamin D3. 20,25(OH)2D3 retained full, or somewhat enhanced activity compared to the parent 20(OH)D3 for the inhibition of the proliferation of melanocytes and dermal fibroblasts, with a potency comparable to 1,25-dihydroxyvitamin D3 [1,25(OH)2D3]. The 20,25(OH)2D3 was also able to act as an inverse agonist on retinoic acid-related orphan receptor α, like its parent 20(OH)D3. Thus, the major findings of this study are that CYP2R1 can metabolize substrates in a membrane environment, the enzyme displays higher catalytic efficiency than CYP27A1 for the 25-hydroxylation of vitamin D, it efficiently hydroxylates 20(OH)D3 at C25 and this product retains the biological activity of the parent compound.
http://ift.tt/2vngvKD
Medicine by Alexandros G. Sfakianakis,Anapafseos 5 Agios Nikolaos 72100 Crete Greece,00302841026182,00306932607174,alsfakia@gmail.com,
Ετικέτες
Παρασκευή 14 Ιουλίου 2017
Properties of Purified CYP2R1 in a Reconstituted Membrane Environment and its 25-Hydroxylation of 20-Hydroxyvitamin D3
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
-
Summary Insulinomas are rare neuroendocrine tumours that classically present with fasting hypoglycaemia. This case report discusses an un...
-
The online platform for Taylor & Francis Online content New for Canadian Journal of Remote Sen...
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου