Ετικέτες

Σάββατο 22 Ιουλίου 2017

SpineNet: Automated Classification and Evidence Visualization in Spinal MRIs

Publication date: Available online 21 July 2017
Source:Medical Image Analysis
Author(s): Amir Jamaludin, Timor Kadir, Andrew Zisserman
The objective of this work is to automatically produce radiological gradings of spinal lumbar MRIs and also localize the predicted pathologies. We show that this can be achieved via a Convolutional Neural Network (CNN) framework that takes intervertebral disc volumes as inputs and is trained only on disc-specific class labels. Our contributions are: (i) a CNN architecture that predicts multiple gradings at once, and we propose variants of the architecture including using 3D convolutions; (ii) showing that this architecture can be trained using a multi-task loss function without requiring segmentation level annotation; and (iii) a localization method that clearly shows pathological regions in the disc volumes. We compare three visualization methods for the localization.The network is applied to a large corpus of MRI T2 sagittal spinal MRIs (using a standard clinical scan protocol) acquired from multiple machines, and is used to automatically compute disk and vertebra gradings for each MRI. These are: Pfirrmann grading, disc narrowing, upper/lower endplate defects, upper/lower marrow changes, spondylolisthesis, and central canal stenosis. We report near human performances across the eight gradings, and also visualize the evidence for these gradings localized on the original scans.

Graphical abstract

image


http://ift.tt/2vuJgpK

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αναζήτηση αυτού του ιστολογίου