Ετικέτες

Πέμπτη 24 Αυγούστου 2017

Effect of hatch length on the development of microstructure, texture and residual stresses in selective laser melted superalloy Inconel 718

Publication date: 15 November 2017
Source:Materials & Design, Volume 134
Author(s): Naresh Nadammal, Sandra Cabeza, Tatiana Mishurova, Tobias Thiede, Arne Kromm, Christoph Seyfert, Lena Farahbod, Christoph Haberland, Judith Ann Schneider, Pedro Dolabella Portella, Giovanni Bruno
In the present study, samples fabricated by varying the deposition hatch length during selective laser melting of nickel based superalloy Inconel 718 were investigated. Microstructure and texture of these samples was characterized using scanning electron microscopy, combined with electron back-scattered diffraction, and residual stress assessment, using neutron diffraction method. Textured columnar grains oriented along the sample building direction were observed in the shorter hatch length processed sample. A ten-fold increase in the hatch length reduced the texture intensity by a factor of two attributed to the formation of finer grains in the longer hatch length sample. Larger gradients of transverse residual stress in the longer hatch length sample were also observed. Along the build direction, compressive stresses in the shorter hatch length and negligible stresses for the longer hatch length specimen were observed. Changes to the temperature gradient (G) in response to the hatch length variation, influenced the G to growth rate (R) ratio and the product G×R, in agreement with the microstructures and textures formed. For the residual stress development, geometry of the part also played an important role. In summary, tailored isotropy could be induced in Inconel 718 by a careful selection of parameters during selective laser melting.

Graphical abstract

image


http://ift.tt/2xxCAXO

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αναζήτηση αυτού του ιστολογίου