Publication date: 15 January 2018
Source:Journal of Hazardous Materials, Volume 342
Author(s): Hong Sui, Yuzhou Rong, Jing Song, Dongge Zhang, Haibo Li, Peng Wu, Yangyang Shen, Yujuan Huang
Mechanochemical destruction has been proposed as a promising, non-combustion technology for the disposal of toxic, halogenated, organic pollutants. In the study presented, additives including Fe, Zn, Fe-Zn bimetal, CaO and Fe2O3 were tested for their effectiveness to remove DDTs by MC. The results showed that Fe-Zn bimetal was the most efficient additive, with 98% of DDTs removed after 4h. The Fe-Zn mass ratio was optimized to avoid possible spontaneous combustion of the ground sample during subsample collection. Inorganic water-soluble chloride in the ground sample increased by 91% after 4h of grinding, which indicated dechlorination during destruction of DDTs. In addition, relationships were established between the rate constant and the rotation speed or the charge ratio. Discrete Element Method (DEM) modeling was used to simulate the motion of the grinding ball and calculate both total impact energy and normal impact energy. The latter expressed a stronger, linear correlation with the rate constant. Therefore, normal impact energy is proposed to be the main driving force in the MC destruction of DDTs.
http://ift.tt/2yq366S
Medicine by Alexandros G. Sfakianakis,Anapafseos 5 Agios Nikolaos 72100 Crete Greece,00302841026182,00306932607174,alsfakia@gmail.com,
Ετικέτες
Τετάρτη 20 Σεπτεμβρίου 2017
Mechanochemical destruction of DDTs with Fe-Zn bimetal in a high-energy planetary ball mill
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
-
Summary Insulinomas are rare neuroendocrine tumours that classically present with fasting hypoglycaemia. This case report discusses an un...
-
The online platform for Taylor & Francis Online content New for Canadian Journal of Remote Sen...
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου