Ετικέτες

Σάββατο 9 Σεπτεμβρίου 2017

Stability of BiFeO 3 nanoparticles via microwave-assisted hydrothermal synthesis in Fenton-like process

Abstract

Stable catalysts require high catalytic efficiency and repeated consecutive use, low mass loss, and metal leaching. This study investigated BiFeO3 (BFO) composite with high stability and reusability using a one step microwave-assisted hydrothermal method (MAHS) to decompose bisphenol A (BPA) used as the target contaminant. After six consecutive reaction cycles in microwave-enhanced Fenton-like process (MW-Fenton-like), the removal rate of BPA decreased from 94 to 87.4% with low metal leaching ratio and mass loss. The morphology, crystal, reaction kinetics, and hydroxyl radical (·OH) were used to demonstrate the high stability of BFO-MAHS. The results indicated that the benign stability and reusability of BFO-MAHS probably occurred because (1) the thermal-effect of MW improved heating rate, which led to the rapid formation stable cube structure and (2) MW mechanical vibrations existed in the preparation process, which further enhanced the cube structure. Therefore, MAHS could be used as a green and environmental friendly method to apply in catalysts synthesis, which could immensely shorten preparation time and enhance the catalytic performance with no waste production.



http://ift.tt/2vXAoN5

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αναζήτηση αυτού του ιστολογίου