Publication date: 1 May 2018
Source:Biosensors and Bioelectronics, Volume 104
Author(s): Jingyi Luo, Danfeng Jiang, Tao Liu, Jingmeng Peng, Zhenyu Chu, Wanqin Jin
In this work, a novel sandwich-type aptasensor was designed for the ultrasensitive recognition of trace mercury ions in water. Numerous oriented platinum nanotube arrays (PtNAs) were in-situ crystallized on a flexible electrode as a sensing interface, while thionine labelled Fe3O4/rGO nanocomposites as signal amplifiers. Both PtNAs/CF and nanocomposites were synthesized by easy hydrothermal processes. With their large surface area, it was favorable for electrochemical performance and immobilization of capture DNAs (cDNA) and report DNAs (rDNA). Upon the existence of Hg2+, partial linker DNAs were tightly bound with cDNAs through thymine-Hg2+-thymine pairing (T-Hg2+-T). Then rDNAs attached Fe3O4/rGO nanoprobes were fixed on the electrode through the match of remaining linker DNAs and rDNAs. Under the optimal conditions, the Hg2+ aptasensor showed a synergistic amplification performance with a wide linear range from 0.1nM to 100nM, as well as a low detection limit of 30pM. Moreover, the as-prepared aptasensor also exhibited reliable performance for assay in real lake water samples.
http://ift.tt/2DB6kpJ
Medicine by Alexandros G. Sfakianakis,Anapafseos 5 Agios Nikolaos 72100 Crete Greece,00302841026182,00306932607174,alsfakia@gmail.com,
Ετικέτες
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
-
Summary Insulinomas are rare neuroendocrine tumours that classically present with fasting hypoglycaemia. This case report discusses an un...
-
The online platform for Taylor & Francis Online content New for Canadian Journal of Remote Sen...
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου