Publication date: September 2018
Source:Journal of Environmental Radioactivity, Volume 189
Author(s): Jun Hu, Guosheng Yang, Miklós Hegedűs, Kazuki Iwaoka, Masahiro Hosoda, Shinji Tokonami
222Rn, 220Rn and their short-lived progenies are well known radioactive indoor pollutants, identified as the leading environmental cause of lung cancer next to smoking. Apart from the conventional measurement methods, numerical modeling methods are developed to simulate their physical and decay processes in 222Rn and 220Rn's life cycle, estimate their levels, concentration distributions, as well as effects of control strategies in the indoor environment. In this article, we summarized the numerical models used to illustrate the physical processes of each source of 222Rn and 220Rn entry into the indoor environment, and the application of Jacobi room models and CFD (Computational Fluid Dynamic) models used to present the behaviors of indoor 222Rn, 220Rn and their progenies. Furthermore, we consider that the development of numerical modeling of 222Rn and 220Rn would have a bright prospect in the directions of stochastic methods based on a steady-state model, the fine simulation of the time-dependent model as well as the multi-dimension model.
http://ift.tt/2G1rmQe
Medicine by Alexandros G. Sfakianakis,Anapafseos 5 Agios Nikolaos 72100 Crete Greece,00302841026182,00306932607174,alsfakia@gmail.com,
Ετικέτες
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
-
Summary Insulinomas are rare neuroendocrine tumours that classically present with fasting hypoglycaemia. This case report discusses an un...
-
The online platform for Taylor & Francis Online content New for Canadian Journal of Remote Sen...
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου